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INVESTIGATION OF THE HYDRODYNAMIC REGIMES OF A LIQUID 

IN A SMOOTH-WALLED ROTATING HEAT PIPE. II 

M. G. Semena and Yu. A. Khmelev UDC 532.542 

The article deals with the analytical and experimental investigation of the in- 
fluence of the slope of a rotating heat pipe and of the taper of its inner sur- 
face on the hydrodynamics of a liquid. 

The heat transfer ability and other characteristics of a rotating heat pipe (RHP) de- 
pend largely on the orientation in the gravity field, which is particularly noticeable at 
relatively low rotational speeds, and on the geometry of the inner surface. 

Let us examine the operation of a RHP in the range of slopes of the axis O~B < ~d' 
where B d is the maximum angle at which the axial component of the centrifugal force cannot 
ensure transport of the heat carrier from the zone of condensation to the zone of evapora- 
tion, i.e., the extreme section of the zone of heat supply begins to dry. 

When ~ > O and the rotational speed ~ is low, the liquid is redistributed along the 
x axis in the groove. If ~ is sufficiently large for the liquid to spread over the inner 
surface without forming a groove, then the redistribution is determined by the ratio of the 
axial component of the force of gravity to the pressure gradient AP in the liquid layer 
formed on account of the longitudinal thickness gradient ~x" In either case the mean thick- 
ness of the layer over the perimeter ~--x = Sx/2~R is a function of the coordinate x. When 
B = 0 or ~ ~ ~, ~x = ~ = const. When B > 0, the number Re x = ~(~--x)2/~, determining, together 
with the number Fr c = ~2R/g, the flow regime (see Fig. 1 [i]), is also a function of x as 
distinct from the horizontal position of the pipe at which the Reynolds number is constant 
for a specified value of ~. 

Thus, when a RHP is inclined, the Reynolds number along the pipe changes, and in con- 
sequence a complex hydrodynamic pattern arises in it; this pattern is characterized by the 
simultaneous existence of different flow regimes described in [i]. 

We obtain the dependence of ~x on the coordinate x for two characteristic cases: a) 
for small values of ~ at which there is a groove in the lower part of the pipe; b) for high 
speeds when the liquid spreads over the entire inner surface. 

Taking small values of the angle B, and consequently a very slight longitudinal com- 
ponent of the force of gravity, we assume that with small m the dependence of ~x on x with 
specified amount of liquid and specified geometry of thej~pipe is determined solely by the 
slope. This assumption means that in the range of rotational speeds at which there exists 
a groove, the liquid moves in a plane perpendicular to the longitudinal axis of the pipe, 
and does not move axially. 

The expression for the volume of liquid in a pipe with B > 0 has the form (Fig. i): 
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D i s t r i b u t i o n  o f  t h e  l i q u i d  in  t he  g roove  o f  an i n c l i n e d  
r o t a t i n g  h e a t  p i p e .  

Sirla%~, ) R---~3 " sin3%~ CP3o cos Cp3o - -  sin q~3~ ~ " + %t cos q%l �9 (1) 
V =  tg[3 Sm%o 3 3 

~nen the pipe is situated horizontally (8 = 0), the volume of liquid in it is determined by 
the equation 

V = S l =  R2/ (2q~--sin2q~ ' 2  (2) 

To simplify Eqs. (i) and (2), bearing in mind that the angles ~30, ~31, ~ do not exceed 
~/4, it suffices to replace the trigonometric functions by two terms of their Taylor expan- 
sion. However, such substitution in (i) has the effect that the terms in parentheses on its 
right-hand side cancel each other. Therefore, if we confine ourselves to three terms of the 
series in Eq. (i) and to two terms in Eq. (2), and if we equate their right-hand sides and 
carry out the corresponding transformations, we obtain 

(O)3 ( 
% - 5ztg~ ~0-~. (3) 

From (2) we have 

3/" 3V a y _  (4) 

= V 2m2 = 3 A. 

We express ~ 3x (the angle in an arbitrary section x) through ~so: 

q)~ = Arccos cos %o + - - ~  (5) 

If we substitute ~ax from Eq. (5), with x = i, into (3), we obtain 

1 [ q ~ o .  Arccor (cos q%o + p tg ~) ] . (6) 
(~~  = 5ptg 

The numerical solution of the transcendental equation (6) with respect to ~3o in the range 
of change ~ = 0~ ~ p = 6-24, ~~ = 0-~/4 is approximated with an accuracy of 2% by the 
expression 

/ ~ 1  3 " \ 0  62  

(P~o = 1 / - 3 ~  @ 9,44, 10 ~ " (7) 

Using Eq. ( 4 ) ,  we d e t e r m i n e  t h e  v a l u e  o f  6x: 

~ =  s~ _ (~.~)~ (8) 
2nR 3r~ 



Thus, by using successively Eqs. (7), (5), and (8), we can determine the longitudinal dis- 
tribution of an amount of liquid in a pipe rotating at relatively low speed. 

In the second case, with high rotational speeds, the dependence of ~x on x, in addition 
to the slope, is also affected by the rotational speed. The axial component of the force of 
gravity, under whose effect the liquid is displaced to one end of the pipe, is balanced by 
the pressure gradient due to the axial gradient of the thickness of the layer. If we examine 
the balance of forces in the projection on the x axis, we can write the following equation: 

pco 2 R - -  d6___ = __ Pg sin ~ I 
�9 dx 

Taking into account that R >> 6, and integrating it, we obtain 

(9) 

~x = sin [3 
- -  x + c. ( 1 0 )  

Fro 

We determine the integration constant c from the condition 

1 i-~xdx" -r (11)  

Then 

c = ~ - ~ -  s i n ~  l (12)  
Fr: c 2 

If we substitute the value of c into Eq. (I0), we obtain an expression determining the longi- 
tudinal distribution of a liquid in an inclined RHP for flow regimes outside the region of 
the "entrained thin layer": 

- --x +~ 

Frc , (13) 

In the region of high rotational speeds it is also easy to take into account the effect 
of the taper of the inner surface of the RHP on the dependence ~x = f(x). In this case 
Eq. (9) will contain an additional term characterizing the magnitude of the taper: 

dx -- pg sin ~ = O" (14) 

Then the expression for determining ~x has the form 

s i n  13 + p t g C ~ l n ( l + p t g a ) _ l n ( l + _ ~ o  t g @ _ l ]  l 
p tgo~ , p tgcz  (15)  

If we compare Eqs. (13) and (15), we see that the taper of the inner surface impedes the re- 
distribution of the liquid when the pipe slopes toward the narrowing end, and conversely, 
promotes redistribution if the pipe slopes toward the widening end. 

By using Eqs. (8) and (13), we will examine how the slope affects the distribution of 
the thickness of the layer over the inner surface of a cylindrical RHP when the rotational 
speed increases from the limiting low speeds to relatively large values. Figure 2 shows the 
dependences of the mean thickness of a layer of liquid on the wall of a RHP on the coordinate 
x and on the speed ~, obtained on the basis of calculations by formula (32) [i] written in 
dimensional form: 

8 o = 2.10--2~1, 36 Ca0'68 
~0,a6  exp (1 1,8 A), (16)  
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Fig. 2. Dependence of the mean thickness of the layer of liquid on the 
coordinate x and on the speed m: i) ~ = 0.314 sec-~: 2) 1.047; 3) 10.47; 
5) 83.78; 6) 209.4; 4) the dependence 8av = ~x = f(x) according to (8). 

~av, m; x, m. 

Fig. 3. Dependence of the relative range of change of the Reynolds number 
on B, p, Frc: i) p = 12; 2) I0; 3) 8; 4) B = ! ~ p = i0; Frc = ~=R/g. 

and also by formula (13). Equation (16), in which 8 x is determined from (8), describes the 
thickness of a liquid layer in the region of the "entrained thin layer," and Eq. (13) de- 
scribes it in the region of high values of ~, when there is no groove. Here it is assumed 
that in the former case 8av = So, and in the latter case ~av = ~x' Here we present some re- 
sults of the experimental investigation carried out with the installation [2] equipped with 
an electric contact sensor for measuring the thickness of layers of liquid. We used water 
as a working liquid. The object of investigation was a cylindrical stainless steel pipe 
(Din = 64 mm, ~ = 300 mm). 

With increasing rotational speed, the thickness of the entrained layer (curves i, 2) 
increases over the entire length of the pipe. Observations revealed that beginning at some 
speed ~H, a zone forms at the extreme section of the pipe where the groove disappears. 
With increasing speed this zone becomes ever longer until the groove disappears altogether 
when m = ~K- An illustration of this process is in Fig~ 2: the fact that with increasing 
speed ~ the curve characterizing the distribution of the layer entrained by the wall shifts 
upward. Beginning at ~H it intersects curve 4, which describes the distribution of the li- 
quid in an inclined pipe in the region of the "entrained thin layer" and is plotted according 
to Eq. (8). The point of intersection of these curves A corresponds to the coordinate x 
where the liquid in the given pipe section spreads in an annular layer over the perimeter, 
and the groove disappears, i.e., the flow regime leaves the region of the "entrained thin 
layer." With increasing ~, the shift of point A expresses the decrease in length of the 
groove. Visual observation showed that at the place which is theoretically determined by 
point A, a transient zone of a thicker turbulized layer of liquid forms; this is in agree- 
ment with the behavior of the dependence ~av = f(x) (curve 3) in Fig. 2. In the interval 
of the rotational speeds ~H < ~ < ~K the dependence 8av = f(x) changes its slope. This is 
due to the difference in the nature of the distribution of liquid along the longitudinal 
axis at low speed, when there is a groove, and at high speeds, when the entire liquid is 
distributed over the inner surface. In the former case the redistribution of the liquid is 
determined by Eq. (8), and it leads to the formation of a layer with positive thickness 
gradient; in the latter case it is determined by Eq. (3), and the longitudinal thickness 
gradient of the layer is negative. 

When the inner surface of the RHP is conical, the redistribution of the liquid at high 
rotational speed is determined by Eq. (15); the thickness gradient of the layer may be either 
positive of negative, depending on the rotational speed, the taper angles, and the inclina- 
tion of the pipe. 

A quantitative indicator of the complexity of the hydrodynamic pattern in an inclined 
RHP is the relative magnitude of the range of measurement of the Reynolds number, shown in 
Fig. 3, in dependence on the slope B and the parameter p for low rotational speeds, and also 
on the centrifugal Froude number for flow regimes outside the region of the "entrained thin 
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Fig. 4. Dependence of the number Re x on the coordinate x (Fr c = 8): 
i) 8 = 1.4~ 2) 0.5~ a) region of "entrained thin layer"; b) of in- 
ertial flow; c) of viscous flow; d) "of rotation of a solid," Re x = 
~(~x)21~. x, m. 

layer." It can be seen from the figure that the nature of the flow of the heat carrier in 
a RHP with higher value of p depends to a greater extent on the slope, and the magnitude of 
the limiting slope 8d' which is determined by the joint solution of Eqs. (5) and (7), then 
becomes smaller (Sdl < 8d2 < 8d3). With increasing centrifugal Froude number the range of 
change of Re outside the region of the "entrained thin layer" decreases rapidly and tends 
toward zero in the region of "rotation of a solid" (Fr c § ~). 

In the upper right-hand corner of Fig. 4 there is a diagram of the possible flow dis- 
tribution of a liquid in a RHP into zones with different regimes. Thus, when the RHP is 
installed at the angle 8 = 8d, the Reynolds number in it changes from zero in the extreme 
cross section x = I to the maximum value in the section x = O. In consequence itris possible 
that, depending on the rotational speed, there may simultaneously exist two, three, or even 
four flow regimes extending in accordance with the Reynolds number that diminishes with in- 
creasing x: the region of the "entrained thin layer," region of inertial flow, region of 
viscous flow, and the region of "rotation of a solid." If the range of change of the Rey- 
nolds number is sufficiently large and includes values belonging to both the Viscous-flow 
and inertial-flow regions, then there is a substantial increase if the ratio of the maximum 
thickness of the layer to the mean thickness, and also a decrease of the magnitude of the 
angular position of the maximum thickness ~ with increasing coordinate x. 

If we use Eq. (4) for the upper boundary of the emergence of the flow regime from the 
region of the "entrained thin layer" [i] (Fr r = 2.2 Re~ for the boundary between the 
regions of viscous and inertial flow (Re = IF, and also for the arbitrary boundary of the 
region of "rotation of a solid" (for ~ = 1.01, see Fig. 1 [i]), we can determine the actual 
dimensions of the zones. In Fig. 4 we can see the change of the number Re x along the RHP, 
and also the dimensions of the zones for a slope B = 1.4 ~ (curve I) that is close to the 
limit value (8 d = 1.47~ For Frc = 8, which was adopted in plotting curves 1 and 2, the 
above-mentioned boundaries are, respectively: Re = 20, Re = i, and Re = 0.07, and they are 
shown in Fig. 4 hy horizontal dashed lines. It follows from Fig. 3 that when ~ decreases, 
the range of changes of the Reynolds number becomes smaller. This leads to the number of 
simultaneously existing flow regimes becoming smaller, too, For instance, with ~ = 0,5 
(curve 2), we find only two regimes in the pipe: the region of the "entrained thin layer" 
and the region of inertial flow. One of the zones (with the flow regime existing under the 
given conditions in the horizontal position of the pipe) extends over the entire length of 
the RHP, superseding the others. 

The taper of the inner surface affects the redistribution of the liquid when the rota- 
tional speed is high, and, as was shown above, increases or decreases (in dependence on the 
sign of angle ~) the effect of the slope on the regimes of the hydrodynamics of the liquid 
in a RHP. 

NOTATION 

8, slope of the pipe; .8d, slope at which the extreme section of the pipe dries; ~, taper 
angle; m, angular speed of rotation; x, longitudinal coordinate:; p, density; g~ acceleration 
of gravity; ~, dynamic viscosity; ~, kinematic visebsity; V, volume of liquid in the pipe; 



Sx, area of liquid in the section x; R, radius of the inner cylindrical surface; Ro, initial 
radius of the conical surface; l, length of the pipe; ~30, ~3z, ~,~ , half-angles of flood- 
ing in the sections x = O, x = l, and in an arbitrary section x, and also for B =_0, re- 
spectively; ~x = Sx/2ZR' mean thickness of the layer of liquid in the section x; 6 = V/2~RI, 
mean thickness of the layer of liquid in the pipe; p = I/R; A = 6/R; A = (o/pgR2)I/2, dimen- 
sionless capillary constant; ~ = 6m/6 , ratio of the maximum thickness to the mean thickness 

, ~ -- 2 

of the layer; ~m, angular coordinate:of the maxmmum thmckness of the layer; Re x = m(6x) /v, 
2 �9 Reynolds number in the section x; Fr = m R/g, centrzfugal Froude number; Ca = ~R~/o, cap- 

illarity number; o, specific surfaceCenergy. 
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HEAT TRANSFER TO TURBULENT STREAM IN PIPES UNDER SUPERCRITICAL PRESSURES 

N. L. Kafengauz UDC 536.242:532.542.4 

Experimental results are presented on heat transfer to several liquid hydrocarbons 
Under supercritical pressures and pseudoboiling conditions. An empirical relation 
is proposed which generalizes these results. 

Much attention has been paid in recent years, in the Soviet Union and abroad, to studies 
of heat transfer to liquids under supercritical pressures. This interest is being stimulated 
on the one hand by practical considerations, and on the other hand by the desire of scientists 
to understand the laws of heat transfer under conditions where the physical properties of 
liquids vary. Reviews of studies on this subject can be found in articles by B. S. Petukhov 
[i, 2], W. Hall and J. Jackson [3], and V. M. Eroshenko and L. A. Yaskin [4]. Many of those 
studies have dealt with heat transfer under supercritical pressures with attendant self- 
excited thermoacoustic vibrations [3, 5, 6]. The effect of these factors will not be dealt 
with in this report. 

On the basis of the results of such studies, there have been proposed many theoretical 
methods for calculating the heat transfer (Dreisler, Goldman, Petukhov, Pop,v, Melik--Pashaev, 
Eroshenko and Yaskin, etc.), and semiempirical formulas have been proposed (Miropol'skii and 
Shitsman, Krasnoshchekov and Protopopov, etc.) which agree satisfactorily with experimental 
data on water, carbon dioxide, helium, and other liquids. 

Curves taken from one report [i], depicting the ~/~o = f(Tw/T m) relation for carbon 
dioxide, are shown in Fig. i. The graph indicates that the intensity of heat transfer de- 
creases with rising temperature of the pipe wall. The trend of this relation is the same 
here as in the methods proposed by other authors and used for other liquids. 

Those methods of calculation assume that the mechanism of heat transfer under super- 
critical pressures is similar to that of plain heat transfer in a turbulent stream of liquid. 
The difference between them lies essentially in the way of accounting for the variation of 
properties of a liquid over the stream section. The attenuation of heat transfer with in- 
creasing referred wall temperature Tw/T m is caused by formation of a gaseous boundary layer 
with a thermal resistance much higher than that of the liquid. The most significant factor 
affecting this attenuation of heat transfer with rising wall temperature is the change in 
density, which follows clearly from the theoretical equation ~/~o = (2/ ~pL/Pw + 1) 2 accord- 
ing to S. S. Kutateladze and A, I. Leont'ev. 
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